Errata

Please e-mail us with any errors you may have found, or directly add them to this page.

$\def\i{\mathbf {i}}\def\ket#1{|{#1}\rangle}\def\bra#1{\langle{#1}|}\def\braket#1#2{\langle{#1}|{#2}\rangle}$

p. 14, 3rd bullet in inner product definition: $(a\bra{v_2} + b\bra{v_3})\ket{v_1} = a\braket{v_2}{v_1} + b\braket{v_3}{v_1}$ —> $\bra{v_1}(a\ket{v_2} + b\ket{v_3}) = a\braket{v_1}{v_2} + b\braket{v_1}{v_3})$

p. 22, 3 lines from bottom there is an extra 's': normalizations factor —> normalization factor

p. 23, 3 lines from bottom: $C$ —> $R^3$

p. 24, Figure 2.6. The zero at the bottom of the picture should be $\ket{0}$.

p. 25, Section 2.5.3, paragraph 2, line 1: equation is linear —> equation is linear and homogeneous

p. 25, Section 2.5.3, paragraph 2, line 10: nothing more … complex vector spaces —> nothing more … complex vector spaces equipped with inner product

p. 168, Figure 8.1 caption. Replace 211 with 11 to obtain $X = \{x | 11^x \mod 21 = 8\}$.

p. 281, first full paragraph, sentence containing equation 11.9. Switch "express" and "to." In the line following eq. 11.9 delete one occurrence of "defined"

p. 312, "Lamont" —> "Lomont"

p. 360, "Lamont" —> "Lomont"

The errors above appear to have been fixed in the First MIT Press paperback edition, 2014. The following still appear in that edition:

p. 24, Figure 2.6. If the arrow on the $z$ axis is to indicate the positive direction, the $\ket{0}$ state should be at the top and $\ket{1}$ (0, 0, -1) at the bottom.

p. 27, Exercise 2.3 d: an unnecessary closing parenthesis at the end

p. 30, Exercise 2.14: "Block" —> "Bloch"

p. 36: The formulae in the Bell basis definition are missing the closing parenthesis.

p.47, The formula following "so relations such as the following hold": $\bra{b} \ket{c}$ —> $\langle b | c \rangle$

p. 50, The definition of $P_s$, the sum should be $\sum_{i=0}^{s-1} \dots$

p.52, Example 4.2.5: "Let $c_1 = \bra{\psi}P_1\ket{\psi} = \sqrt{|a_{00}|^2 + |a_{11}|^2}$" —> "Let $c_1 = \sqrt{\bra{\psi}P_1\ket{\psi}} = \sqrt{|a_{00}|^2 + |a_{11}|^2}$". Ditto for $c_2$.

p. 53, The proof that eigenvalues of a Hermitian operator are real: $\bra{x_\lambda} (O \ket{x_\lambda})$ —> $\bra{x} (O \ket{x})$